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Abstract: Discrete Tchebichef moments are wid ely used in the field of image processing application and pattern 
recognition. In this paper we propose a compact method of 3D Tchebichef moments computation. This new method 
based on Clenshaw’s recurrence formula and the symmetry property produces a drastic reduction in the complexity 
and computational time. The recursive algorithm is then developed for fast computation of inverse Tchebichef 
moments transform for image reconstruction. We also extract scale and translation 3D moment invariants using a 
proposed direct method. The validity of the proposed algorithm is prov ed by simulated experiments using 3D 
image/Object. 
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1 Introduction 
Image moments have been widely used in pa ttern 
recognition and image analysis tasks [1-5]. Geometric 
moments and their translation, scaling and rotation 
invariants were introduced by Hu [6]. Teague in [7 ] 
proposed the concept of orthogonal continuous 
moments such as Legendre and Zernike moments to 
represent image with minimum amount of information 
redundancy. The major disadvantage of the above 
moments is the discretization error, which increases by 
increasing the moment order. To surmount the 
weakness of t he continuous orthogonal moments, 
Mukundan et a l. in [8] proposed a set of d iscrete 
orthogonal Tchebichef moments. 

The use of Tchebichef polynomials as basis function 
for image moments eliminates the discrete 
approximation associated with the continuous 
moments. Moreover, it represents an image with the 
minimum amount of information redundancy [8]. Based 
on these attractive properties, Tchebichef moments are 
used in many applications such as object classification 
[9], Analysis of noise [10], pattern recognition [11], 
reconstruction in medical imaging [12], texture analysis 
[13], Image watermarking [14], Image segmentation 
[15], edge detection [16], image focus measure [17] and 
data compression [18]. 

It is well known that the direct computation of 

Tchebichef moments is time consuming process and the 
computational complexity increased by increasing the 
moment order [1 9]. Therefore, some algorithms have 
been developed to accelerate the computational time of 
Tchebichef moments. Mukundan et al. [8] analyzed 
some of the computational aspects of Tchebic hef 
moments by using the well-known properties of 
Tchebichef polynomials, such as the symmetry, 
polynomial expansion, and recurrence relation of 
Tchebichef polynomials. But the authors have never 
given a detailed and complete algorithm for th e 
computation of Tchebichef moment [19]. Then, a 
recursive algorithm based on Clenshaw´s recurrence 
formula using a second order digital filter is proposed 
by Wang and Wang [19]. The authors developed both a 
direct recursive algorithm and a compact algorithm for 
the computation of Tchebichef moment. The e ffective 
recursive algorithm for inverse Tchebichef moment 
transform was also presented.  

However, those approaches were d eveloped for the 
case of 2D images and only few works were presented 
to compute 3D Tchebichef moments. In fact, 3D 
images require more amount of information to process. 
Consequently, the complexity increases with h igh 
orders more noticeably than in 2D case. The most 
important paper investigating the Tchebichef moments 

WSEAS TRANSACTIONS on COMPUTERS
Mostafa El Mallahi, Abderrahim Mesbah, 

Hakim El Fadili, Khalid Zenkouar, Hassan Qjidaa

E-ISSN: 2224-2872 513 Volume 14, 2015



 

for 3D objects is the work of Wu et al. [20] where only 
scale invariants computation were carri ed out. They 
proposed, to reduce the computation time, an algorithm 
based on matrix multiplication for computing 3D 
Tchebichef moments. 

In this paper, we first propose a compact method of 
3D Tchebichef moments computation applied for object 
reconstruction where the symmetry property and a 
recursive algorithm based on Clenshaw´s recurrence 
formula are used to accelerate the whole computational 
process. Secondly, we extract via a proposed direct 
method scale and translation invariants for 3D objects. 
We present the necessary mathematical framework to 
derive this new set of 3D invariants. In fact, the scale 
invariants are achieved by eliminating the scale and 
translation factors contained in the transformed 
Tchebichef moments. With t his new direct approach, 
we eliminate the requ irement of calculating the 
normalization parameters of the shifted or scaled image 
and utilizing indirect method based on geometric 
moments. Traditionally, the translation and scale 
invariant functions of Tchebichef moments can be 
obtained by two methods [9]: (i) image normalization 
method; (ii) indirect method, where Tchebichef 
moments are expressed as a linear co mbination of the 
corresponding invariants of geometric moments. 
Unfortunately, as mentioned by Chong et al. in [21] 
these methods have two major drawbacks. The  
normalization method leads to further co mputational 
complexity due to this preprocessing normalization 
step. Furthermore, the normalization scheme derives 
moments which may differ from the true moments of 
the original image because of the normalization 
parameters of t he coordinate transformation. The 
indirect method is time consuming process due to 
additional time for polynomial coefficients 
computation. 

Summarily, in our work, we a dopt the compact 
computation method for 3D Tchebichef moments, in 
spite of the straightforward method, to extract the 
invariants which will produce a significant reduction in 
the computation time through Clenshaw´s and 
symmetry propriety. Finally, detailed complexity 
analysis of the proposed and straightforward methods is 
carried out. Complexity analysis in terms of number of 
additions and multiplications show the efficiency of the 
proposed method. 

The rest of the paper is organized as follows: in 
Section 2, an overview of 3D Tchebichef moments and 
object reconstruction are given. The proposed fast and 

compact recursive computation for 3D images is 
presented in Section 3. Section 4 is devoted to th e 
proposed 3D Tcheb ichef invariants extraction. Section 
5 presents the simulation results on 3D im age 
reconstruction, translation and scale invariant and 
computational complexity. Finally, concluding remarks 
are presented in Section 6. 
 
 
2 Three-dimensional Straithforward 
Tchebichef moments computation 
In this section we will present the  mathematical 
background behind the Tchebichef moment theory 
including polynomials, moments computation and 
reconstruction. 
 
 
2.1 Tchebichef polynomials 
The discrete Tchebichef polynomial of order n is 
defined as [8]: 

0

1!( ) ( 1) ,
n

n k
n n

k

N k n k xnt x
n k n kN

−

=

− − +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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where n=0,1,2,3,....N-1. 
The scaled Tchebichef polynomials satisfy the 
following  recursive relation with respect to n : 

2

1 1 22

(2 1) ( 1) (n 1)( ) ( ) ( ) (1 ) ( ),n n n
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− −
− − −

= − × −  (2) 

where n=2,3,....N-1 
with the initial conditions 

0 ( ) 1t x =   and     1( )t x x=  
 
 
2.2 Three-dimensional Straightforward 
Tchebichef moments computation 
The 3D Tche bichef moment of order m n k+ +  of an 
image intensity function ( , , )f x y z are defined over the 
cube [0, 1] [0, 1] [0, 1]M N K− × − × −  as: 

1 1 1
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2.3 Object reconstruction using 3D Tchebichef 
moment 
Since, Tchebichef polynomial ( )nt x forms a complete 
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orthogonal basis set on the interv al [0 , 1]N −  and 
satisfies the orthogonal property. The 3D image/object 
intensity function f(x,y,z) can be expre ssed over cube 
[0, M 1] [0, 1] [0, K 1]N− × − × −  as: 

1 1 1

0 0 0

( , , ) ( ) (y) (z).
M N K

m n krec mnk
m n k

f x y z T t x t t
− − −

= = =

= ∑∑∑        (5) 

The straightforward method needs two separate steps. 
We first compute the Tchebichef polynomial value and 
second, we evaluate the sum of eq. (3). In the present 
case of 3D Tchebichef moment the computation 
involved in Eq. (3) is highly expensive in terms of time 
computing. In fact, we have three  sums, in spite of two 
in the 2D case, each of which necessitate the evaluation 
of three polynomials mt , nt  and kt . 

In order to speed up the total computation of 
Tchebichef moment which is high ly expensive in the 
3D case, we use i n this paper a recursive 
implementation based o n the Clenshaw’s recurrence 
formula [22] adapted for 3D case, this method can 
affect the polynomials computing process 
simultaneously and reduce the computation cost of 
moment and inverse transformations especially for high 
order of moment. 
 
 
3 The proposed method: compact 
recursive computation for 3D images 
In this section we use the Clenshaw’s recurrence 
formula in order to reduce the p roblem of 
computational complexity and f or more reduction of 
computation time especially for 3D images we combine 
this recursive method with another property of 
Tchebichef polynomial which is the s ymmetry 
property. 

Before giving the details of the proposed method, we 
shall present the Clenshaw’s recurrence formula which 
may speed up the tota l computation compared with 
straightforward method described below. This 
recurrence computation will be use ful in the case o f 
higher order moments and therefore the related inverse 
transform. 
 
 
3.1 Clenshaw’s recurrence formula 
Clenshaw’s recurrence formula [22] is an elegant and 
efficient way to evaluate a sum of coefficients times 
functions that obey a recurrence formula: 

Suppose that  

0
( ) ( ) ,

N

k k
k

J x c F x
=

= ∑    (6) 

and that kF  obeys the recurrence relation: 

1 1( ) ( , ) ( ) ( , ) ( ),n n nF x n x F x n x F xα β+ −= +    (7)

 
for some functions ( , )n xα and  ( , )n xβ . 

Then Clenshaw’s recurrence formula states that the 
sum ( )J x  can be evaluated by 

0 2 1 1 0 0( ) (1, x) F ( ) ( ) ( ),J x x F x c F xβ ψ ψ= + +
   

(8) 
where the quantities nψ  can be o btained from the 
following recurrence 

2 1

1 2

0
( , ) ( 1, ) ,

( , 1,............,1)

N N

k k k kk x k x c
k N N

ψ ψ
ψ α ψ β ψ

+ +

+ +

= =

= + + +

= −  
(9)

 

and solve backwards to obtain 2ψ  and 1ψ  
Clenshaw’s recurrence formula has been used to 

develop forward and inverse discrete moments but only 
for the 2D case [19]. In the next section, we propose to 
use Clenshaw’s formula to co mpute 3D Tchebichef 
moment and its inverse function. 
 
 
3.2 Symmetry property 
The symmetry property will be used to reduce the time 
and the storage required for the scaled Tchebichef 
polynomials, especially in the case of 3D object where 
a considerable amount of information to process is 
needed. 

Orthogonal 3D Tchebichef moments are defined as 
the projection of t he digital 3D image/object onto the 
Tchebichef polynomials. Since, these polynomials are 
defined over the closed interval 
[0, 1] [0, 1] [0, 1]M N K− × − × − , therefore, the 3D 
image/object must be transformed inside the cube. 
Orthogonal Tchebichef polynomials are defined over 
the cube [0, 1] [0, 1] [0, 1]M N K− × − × −  and have the 
following symmetrical properties: 
 ( 1 ) ( 1) (x ) ,m

m mt M x t− − = −    (10.1) 
 ( N 1 ) ( 1) ( y ) ,n

n nt y t− − = −    (10.2) 
 (K 1 ) ( 1) (z) .k

k kt z t− − = −    (10.3) 
This relation suggests the subdivision of the domain 

of an / 2 * / 2* / 2M N K  for 3D image/object, only one-
eight of the whole object space is required to compute 
the entire set of 3D Tchebichef moments as depicted in 
Fig.1. The implementation of this property results in 
87% reduction in the computational cost. A detailed 
discussion of this will be found through the following 
subsections. The expression for Tchebichef moments in 
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(3) can b e modified with the help of (10.1, 10.2 and 
10.3) as follows. The Tchebiche f polynomials 

(M 1 ),mt x− − (N 1 )nt y− − and (K 1 )kt z− −  defined by 
using similar equation. Based on Eq. (3) 

 
Fig.1. Owing to symmetry, Tchebichef polynomials need be 

computed only one-eight of the whole image 
 

The Tchebichef moments are defined as follows: 
1 1 1
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where M,N ,K are even. 

 
 
3.3 The proposed computation of 3D 
Tchebichef moments by Clenshaw’s recurrence 
formula 
Due to separability property of Tchebichef 
polynomials, the computation of 3D Tchebichef 
moment can be divided into computing on 1D 
moments. 

1

0

1 (x) ( ).
(n, N)

N

nn
n

T t f x
ρ

−

=
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(12)
 

where n=1,2………….N. (x)nt  defined in Eq. (1 ) 
and (n, N)ρ  defined in Eq. (4) . The scaled Tchebichef 

polynomial ( )nt x can be deriv ed from a three-term 
recurrence, with respect to the variable x:  
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for x=2,…,N-1 
with 
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Using Eq. (9) we define 
1
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0
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for 1, N 2,...1x N= − −  
with ( 1,n) 0a Nα − = and ( 1) ( ) 0a aN Nβ β− = =  
using Eq. (8), we get 
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From Eq. (19) with x= 0, we have: 
0 1 2

1 2
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n n N N f

N N
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Finally , we can rewrite Eq. (12) as : 

 

0
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n N
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 We can extended this algorithm to d erivate the 3D 
Tchebichef moment. According to the symmetry 
property , we can rewrite Eq. (3) as: 
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where 
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M,N and K are even. 
We calculate the coefficients ( )xy kω

 
for each 1, ..., 0 and 1, ...0

2 2
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the coefficients ( , )x n kω defined by Eq. (20) are first 
evaluated 
for each 1, ...1, 0

2
Mx = −  

1
2 2

1 2

0

(y, n) (y 1) (k)

( 1, ............1, 0) ,
2

N N

y a y a y xy

Nfor y

φ φ

φ α φ β φ ω

+

+ +

= =

= + + +

= −
 

 

0
(0)(n, ) ,

(n, N)
n

x
tkω φ
ρ

=

 

(24) 

Then (n,k)xω  are applied to ev aluate the m n kT defined 
by Eq. (11)  

1
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Finally, the 3D Tchebichef moment of order 

m n k+ + is computed in three steps (Algorithm 1) by 
successive computation of the 1D  mth order moment for 
each  ro w, followed by the 2D (m+n)th order moment. 
Then, the required 3D moment is calculated as a sum of 
the different 2D moments. This approach significantly 
reduces the total number of required addition and 
multiplication processes. 

 
 

Algorithm 1:3D compact Tchebichef  moment 
computation 

For given image ( , , )f x y z of size ( , , )M N K  

Step 1: for 1, ..., 0
2
Kz = − evaluate ( )xy kω using Eq. (22) 

Step 2: for 1,......,0
2
Ny= −  evaluate ( , )x n kω using Eq. (24) 

Step 3: for 1,......,0
2
Mx= −  finally and calculate mnkT using 

Eq. (25) 
 
 
3.4 Computation of inverse 3D Tchebichef 
moment transform 
For the 3D case , the inverse moment transformation 
(5) can be re-expressed as : 

1

0
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we define   
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 Then compare Eq. (2) with Eq. (7), we obtain:  
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In the first step we evaluate the coefficients (z)nmω  
defined by Eq. (28), for each 1, 2, ..., 0m M M= − − and 
each  

1, 2 , ....0n N N= − − : 
1

1 2

0
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(31) 
In the second step, we use Eq. (3 1) to calculate the 
coefficients (y, z)mω  defined by Eq. (27) for each 

1, 2,...,0m M M= − −  

1

1 2

0
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 0(y, z) ,mω φ=  (32) 
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Finally, (y, z)mω  are applied to evaluate 
recursively ( , , )f x y z  defined by Eq. (26)  

1

1 2

0
(m , x) (m 1) (y, z)

fo r 1, M 2, ............, 0 ,
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m M
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0( , , ) .f x y z χ=  (33) 
 

Algorithm 2: Image reconstruction using 3D compact 
Tchebichef moment  

For given order , ,M N K  
Step 1: for  1,...,0k K= − evaluate (z)nmω using Eq. (31) 

Step 2: for 1,...,0n N= − evaluate (y, z)mω using Eq.(32) 
Step 3: for 1,......,0m M= −  finally and calculate 

( , , )f x y z  using Eq.  (33) 
 
 
3.6 Computational Complexity: Number of 
additions and multiplications 
In this section, the total number of addition and 
multiplication operations required to compute 3D 
Tchebichef moment of 3D digital image/object with 
size * *M N K in the proposed method is explicitly 
compared with the straightforward method. 

Table 1 shows the co mputational complexity for 
computing 3D Tchebichef moment of order m n k+ + . 
For the proposed method in comparison with the 
methods that we will re fer as straightforward Method 
(1) and (2). 

We can conclud e for the result that the proposed 
method is more efficient than both the Straightforward 
Method with respect to order and to x. For example for 

a given order ( 1) ( 1) ( 1),M N K− + − + −  the proposed 
method reduces  
1 2 5
8

MNK NK K− − −  multiplications and 3 3 3
4 2

NK K+ +  

additions. 
The proposed method reduced 1 2 5

8
MNK NK K− − −  

multiplication compared with Straightforward Method 
respect to x and 1 (2 5)

8
MNK M+ − ( 2 6 )

4 2
N K KN+ − +  

( 2 6 ) 1K× − −  additions compared to the 
straightforward Method respect to order and an 
important reduction in terms of additions of 
1 ( 17) ( 3) ( 3)
8 2 2

NK KMNK M N K− + − + −  compared with the 

straightforward Method respect to o rder with a 
Straightforward increase of 3 3 3

4 2
NK K+ +  compared 

with Straightforward method respect to x. 
 
 

4 The proposed 3D Tchebichef 
Invariants Extraction 
Inspired from the work of Zhu et al. [9] who developed 
the demonstration in the case of 2D, we generalize the 
translation invariance for the case of 3D. 
 
4.1 Translation invariance of 3D Tchebichef 
moment 
Central 3D Tchebichef moments are translation 
invariants. These moment invariants of order 
m n k+ + are defined as  

 
 

 
Table 1. Comparison of computational complexity for computing a single 3D Tchebichef moment between our 
proposed method (recursive compact method) , Straightforward Method (2), and  Wu’s method [20]. 

 

Method Additions Multiplications 
Straightforward 

Method using Eq. (2) 
(Straightforward 

Method (1) : Wu’s 
method [20]) 

( 7) ( 1) ( 1)
8 4 2

MNK NK Km n k− + − + −  (2 1) (2 1) (2 1)
8 4 2

MNK NK Km n k− + − + −  

Straightforward 
Method using Eq.(12) 

(Straightforward 
Method (2)) 

9 3
8 4 2

N K KM N K − − −  3 4
8 4 2

N K KM N K − − −  

Proposed method : 
recursive compact 

method 

9
8 2

N KM N K K+ +  1 3 3 1
4 4 2

N K KM N K + + +  
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1 1 1

0 0
0 0 0

0

1'
( , ) (n, N) (k, K)

( ) ( )

( ) ( , , ) .

mnk

M N K

m n
x y z

k

T
m M

t x x t y y

t z z f x y z

ρ ρ ρ
− − −

= = =

=

× + +

× +

∑ ∑∑  (34) 

 
where 0 0 0( , , z )x y denote the coordinates of centroid of 
the image given by 

001100 010
0 0 0

000 000 000

, , z .
mm mx y

m m m
= = =

 

(35)

 
and ijkm is the geometric moment of order i j k+ + , 
defined as: 

1 1 1

0 0 0
( , , ) .

M N K
i j k

ijk
x y z

m x y z f x y z
− − −

= = =

= ∑ ∑ ∑
  

(36)
 

To compute these central 3D moments, we can prove 
that the translated Tchebichef polynomials can be 
expressed in terms of the o riginal Tchebichef 
polynomials according to the relation: 

0 , 0
0

( ) ( ) ( ) ,
m

m m pm m p
p

t x x x t xν −−
=

+ = ∑    (37.1) 

0 n,n 0
0

( ) ( ) ( ) ,
n

n n qq
q

t y y y t yτ −−
=

+ = ∑    (37.2) 

0 k,k 0
0

( ) ( ) ( ) .
k

k k rr
r

t z z z t zη −−
=

+ = ∑    (37.3) 

The matrix ,m m pν −  is defined by Zhu et al [9]: 
1

, 0 0
0

( ) ( , ) ,
k

m m p i k i
i

x f n k xν
−

− −
=

= ∑ ≺
 

(38) 

where ( , )if n k  is expressed for a given in teger k less 
than or equal to n, and for 0 1i k≤ ≤ − by: 

}

1

0

( )! (2 )! ( , )( , )
(2 2 )! !( )!( )! ( , )

1 (2 2 )!
( )! ( )!

( , )
( , )

( , ) .

i

i

i
m

i m

m

n k n i n k Nf n k
n k i k i n i n N

n k m in N
n k i m

n k N
n m k i N

n m k i N

f n k m i

β
β

β
β

−

=

−

⎧− − −
= ⎨− − −⎩

− − +
× − −

− −
−

×
− − +

× − − + −

× + −

∑≺

≺

 (39) 

where  
( , ) ( 1)( 2)...( ) .m M M M M mβ = − − −

   and 
( 1) ( ) ,k

k ka a= −≺
  with 

( ) ( 1)( 2)....( 1) .ka a a a a k= + + + −  (40) 

  for k>0 and 0( ) 1a =  
The matrices

n,n qτ −
and 

k,k rη −
are determined by using 

similar equations. Eq. (38) sh ow that the matrices 
,m m pν − , n,n qτ −

and 
k,k rη −

are image-dependent. 

Substituting Eqs. (37) in (34), we c an rewrite th e 
central 3D Tchebichef moment as: 

1 1 1

0 0 0 0 0 0

0

0 0 , ,

' ( , )

( , ) ( , )

.

p qm n k r

mnk a
p q r a b c

b c p a

q b r c m p n q k r

T f m p

f n q f k r x

y z T

− − −

= = = = = =

−

− − − − −

=

× −

× − −

∑ ∑ ∑ ∑ ∑ ∑
≺

≺ ≺
  (41) 

Where mnkT  is defined by Eq. (25).  
Eq. (41) shows that the 3D Tchebichef central 

moments 'mnkT  can be expressed as linear combination 
of normal Tchebichef moments mnkT  with 0 p m≤ ≤  , 
0 q n≤ ≤  and 0 r k≤ ≤ , so that the translation  
invariants of Tchebichef moments can be direc tly 
derived from the normal Tchebichef moments.  

Note that Eq. (41) deals with both non-symmetrical 
and symmetrical images when the Legendre and 
Zernike moments do not. As indicated by Chong et al. 
[21], both Legendre central moments and Zern ike 
central moments give zero values for odd order 
moments when they are used for images with symmetry 
along x and/or y directions, and symmetry at centroid. 
These limitations may cause difficulties in pattern 
classification. A solution was proposed by Chong et al. 
to surmount this sh ortcoming. Since the Tchebichef 
central moments do not encounter this problem, they 
should be more suitable for u se as pattern feature 
descriptors compared to the Legendre and Zernike 
moments. 
 
 
4.2 Scale invariance of 3D Tchebichef moments 
The scale invariant property of 3D image/object 
moments has a high significance in pattern recognition. 
Scaling can be either uniform or non-uniform in the x, y 
and z-directions. As indicated in the introduction, the 
scale invariants of Tchebichef moments can be usually 
achieved by image normalization method or in 
Straightforward method. This subsection presents a new 
approach to deriv e the scale invariants of Tchebichef 
moments when an image is scaled. Le t us assume that 
the original image is scaled with factors a, b and c, 
along x,y and z-d irections, respectively. The sca led 
Tchebichef moments can be defined as follows: 
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1 1 1

0 0 0

" (a ) (b ) (c ) ( , , ) .
M N K

m n kmnk
x y z

T t x t y t z f x y z
− − −

= = =

= ∑ ∑ ∑  (42) 

Where a, b and c are unequal non-zero real numbers 
representing the sc aling factors i n the three direction. 
Zhu et all in [9] expressed the scaled Tchebichef 
polynomials in terms of the original Tchebichef 
polynomials as follows: 

m ,p m ,p
0 0

(ax) a (x) ,
m m

m
p p

p p
t tλ λ

= =

=∑ ∑    (43.1) 

n,q n ,q
0 0

(by) (y) ,
n n

n
q q

q q
t b tλ λ

= =

=∑ ∑   (43.2) 

k,r k,r
0 0

(cz) (z) .
k k

k
r r

r r
t c tλ λ

= =

=∑ ∑    (43.3) 

The matrix ,m pλ  is defined using the following 
equations 

,

1
, ,

,p
0 ,

1

,

m m

m p
m r p m r

m
p p p

c
C

λ

λ
λ

− −
−

=

=

−
= ∑

       (44) 

[ ],w ith  d e fin ed  b y 9m ic
 

, ,
0 0

( , ) ( ),
m i m i

m i m m k k
k k

c B s m k i c m i
− −

−
= =

= − = −∑ ∑      (45) 

with 

,( ) ( , ),k m m kc m k B s m k i−− = −         
and 

,k
,k ,

( , )
m

m

B
B

m Mβ
=           

where 

,k 2

( ) ! .
( ) !( !)m m k

m kB m N
m k k −

+
= −

−
≺  

In order to red uce the computational complexity in 
the calculation of ,m ic defined by Eq. (45) we use the  
following recurrence relations to compute 

( , )kc m i with 

,( ) ( , ) ,k m m kc m k B s m k i−− = −
  

2

( ) 0 and
(2 1)( , )

( 1)( 1)
( 1, ) ( 1, ) ,

( , )

k

k

k

c m i for i m k
k m kc m i

m n k m k
s m k i c m i

s m k i

− = > −

− +
=

− − + − +
− +

× −
−

 
(46)

 

for  ,0 1i m k k m≤ − ≤ ≤ −  
with 

,0( , 0 )m mc m B=
 

(47) 
and ( , )s k i are the stirling numbers of the first kind 
satisfying the following recurrence relations: 

( , ) ( 1, 1) (k 1) ( , ) .
1, 1

s k i s k i s k i
k i

= − − − − −
≥ ≥  

(48)  

with 
( ,0) (0, ) 0,k 1, i 1 and (0,0) 1.s k s i s= = ≥ ≥ =  

The relationship between the original and scaled 
Tchebichef moments can then be established as 

"

0 0 0

1 1 1

0 0 0

.

m n k

m nk m p nq kr pqr
p q r

m n k
m n k

m p nq kr pqr
p q r

T

a b c T

ϕ λ λ λ

λ λ λ

= = =

+ + +

= = =

=

=

∑ ∑ ∑

∑ ∑ ∑  
(49) 

Finally By eliminating the scale factor a, b and c, we 
can constructed the following scale invariant of 3D 
Tchebichef moment. 

000

2

( ) 00 0 (n ) 0 00 ( )

.mnk
mnk

m k

ζ

ζ ζ ζ

ϕ ϕ
ψ

ϕ ϕ ϕ

+

+ + +

=
 

(50) 

, , 0,1,...and.. 0m n k ζ= ≥
  

 
5 Numerical Simulation 
In this section, e xperimental results are provided to 
validate the ability of the algorithms developed in the 
previous sections. The following section is divided into 
two subsections. In the first one, we address the 3 D 
image reconstruction capability of 3D Tchebichef 
moments using the proposed compact recursive 
computation. Then we compare the performances of the 
proposed method with the Wu’s method [20] referred in 
this paper as straightforward method (1) using Eq. (2) 
and straightforward method (2) using Eq. (12) (cited in 
table (1)) in terms of elapsed CPU time under the same 
computing environment.  

Due to the importance of 3D features in the context 
of pattern recognition, the second subsection is devoted 
to numerical experiments on translation and scale 
invariance of 3D Tchebichef moment, for this we use 
3D characters and simulated object. 
 
 
5.1 Three-dimensional image reconstructions 
and computation time of Tchebichef moment 
The performance of the 3D image reconstruction using 
Tchebichef moment will be exp lored using the Mean-
Square Error MSE  which is defined as: 

1 1 1
2

0 0 0

1 ( ( , , ) ( , , )) .
M N K

rec
x y z

M SE f x y z f x y z
M N K

− − −

= = =

= −∑ ∑ ∑
 

(51)
 

Where * *M N K is image size and recf  is the 
reconstructed image function for different orders. 

Figure 2 s how images reconstructed using 
Tchebichef moment for different orders. The size of 
each of the gray images is ( 32 *32 *32 ) representing the 
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characters “E” and “A”. We illustrate different orders 
from 6 to 30. As it can be seen from the figures, the 
reconstructed images using Tchebichef moment show 
progressively more visual resemblance with the original 
image in the early orders. The edges of the  
reconstructed images are also b etter defined with less 
jaggedness. 

 

   (a) 
 

 
  (b) 

Fig.2. Image Reconstruction error of 3D letter ‘A’ and ‘E’ in 
(a) and (b) respectively 

 
Fig 2 presents the plot of the reconstruction error for 

different moment orders up to 30. We can see that the 
convergence is faster in terms of reconstruction error, 
which means that the reconstructed images will be 

closer to the original one when the maximum moment 
order increases 
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Straightforward Method (1)  (Wu's method [20]) 
Straightforward Method (2)
Proposed Method

 
Fig.3. Elapsed CPU time in seconds for 3D Tchebichef 

moment computation 
 
Fig. 3 shows CPU elapsed times using our compact 

recursive method in comparison with Wu’s method [20] 
referred as straightforward method (1) using Eq. (2) and 
straightforward method (2) using Eq. (25) (cited in 
table (1)). The CPU times is obtained using Matlab 9 
and implemented on HP 630 Laptop machine equipped 
with a processor of 3.4 Ghz and 4 GB RAM.Fig. 6 
implies that our moment computation method requires a 
noticeable less computation time even with moments of 
high orders compared with straightforward methods. 
 
 
5.2 Translation and Scale Invariance 
Invariance of orthogonal moments is very useful for 
pattern recognition applications. In this subsection, a 
series of numerical experiments are achieved to 
evaluate the invariance of our 3D Tchebichef moments 
with respect to translation, scaling and reflection. In the 
first set of experiments, we explore the translation 
invariance of characters “E” and “A” under different 
translation parameters (table (2) and (3)). The other set 
of experiments show the scale invariance for the 3D 
character “E” (table (4)) and  the  scale and reflection 
for the 3D simulated object (table (5)). 
The obtained results show that fac tors the 3 D 
Tchebichef moment invariants has the same values 
whatever the translation, scaling and reflections. Those 
results show the invariance properties of t he proposed 
3D Tchebichef moment features efficiency of the 
proposed method. 

WSEAS TRANSACTIONS on COMPUTERS
Mostafa El Mallahi, Abderrahim Mesbah, 

Hakim El Fadili, Khalid Zenkouar, Hassan Qjidaa

E-ISSN: 2224-2872 521 Volume 14, 2015



 

     
Original image  32 x 32 x 32 

 
Order 6 

 
Order 8 

 
Order 10 

 
Order 12 

 
Order 14 

 
Order 20 

 
Order 25 

 
Order 30 

 
Fig.4. Image reconstruction of 3D letter ‘E’ of size (32 x 32 x 32) 

 

 
Original Image 32 x 32 x 32 

 
Order 6 

 
Order 8 

 
Order 10 

 
Order 12 

 
Order 14 

 
Order 20 

 
Order 25 

 
Order 30 

 
Fig.5 Image reconstruction of 3D letter ‘A’ of size (32 x 32 x 32) 

 

 
Original Image 32 x 32 x 32 

 
Order 6 

 
Order 8 

 
Order 10 

 
Order 12 

 
Order 14 

 
Order 20 

 
Order 25 

 
Order 30 

 
Fig.6. Image reconstruction of 3D letter ‘P’ of size (32 x 32 x 32) 

 
Fig.7. Image reconstruction of 3D letter ‘0’ of size (32 x 32 x 32) 

 
 

Table 2. Translation Invariance for selected orders for the 3D character “E” being symmetric along x-axis 
 

Translation 1 0 0'T  0 1 0'T 0 0 1'T 2 0 0'T 1 1 0'T 3 0 0'T  0 3 0'T
1, 1, 1i j kΔ = Δ = Δ =  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 

1, 1, 1i j kΔ = Δ = Δ = −  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 
1, 1, 1i j kΔ = Δ = − Δ =  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 

1, 1, 1i j kΔ = Δ = − Δ = −  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 
1, 1, 1i j kΔ = − Δ = Δ =  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 

1, 1, 1i j kΔ = − Δ = Δ = −  2.0296 4.0700 3.7207 -1.1472 -1.6619 4.9957 5.1983 

 
Original Image 32 x 32 x 32 

 
Order 6 

 
Order 8 

 
Order 10 

 
Order 12 

 
Order 14  

Order 20  
Order 25

 
Order 30 
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Table 3. Translation Invariance for selected orders for the 3D character “A” 

 
Translation 100'T  010'T  001'T  200'T  110'T  300'T  300'T  

2, 1, 1i j kΔ = Δ = Δ =  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

1, 1, 2i j kΔ = Δ = Δ = −  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

2 , 1, 1i j kΔ = Δ = − Δ =  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

1, 1, 1i j kΔ = Δ = − Δ = −  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

1, 1, 1i j kΔ = − Δ = Δ =  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

1, 1, 1i j kΔ = − Δ = Δ = −  2.1697 4.0740 3.5230 -1.6627 -1.9528 6.5843 8.4240 

 
 

Table 4. Scale invariants for the 3D letter “E” 
 

Scale 
(*1.0e-05) Original shape Transf shape 1 Transf shape 2 Transf shape 3 Transf shape 4 Transf shape 5 Transf shape 6 

 a=1,b=1,c=1 a=0.5,b=1,c=1 a=1,b=0.5,c=1 a=1,b=1,c=0.5 a=2,b=1,c=1 a=1,b=2,c=1 a=1,b=1,c=2 

100ψ  -0.6682 -0.6682 -0.6682 -0.6682 -0.6682 -0.6682 -0.6682 

010ψ
 

-0.6733 -0.6733 -0.6733 -0.6733 -0.6733 -0.6733 -0.6733 

200ψ  0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 

110ψ  0.7460 0.7460 0.7460 0.7460 0.7460 0.7460 0.7460 

300ψ  -1.3764 -1.3764 -1.3764 -1.3764 -1.3764 -1.3764 -1.3764 

030ψ  -1.3864 -1.3864 -1.3864 -1.3864 -1.3864 -1.3864 -1.3864 

102ψ  -9.7441 -9.7441 -9.7441 -9.7441 -9.7441 -9.7441 -9.7441 

 
Table 5. Scale and reflection invariants for the 3D simulated object and its elongated, contracted and reflected versions. 

 
Scale 
 and  

 reflection 

  
*1.0e-02 a=1,b=1,c=1 a=-1,b=1,c=1 a=0.5,b=-2,c=0.6 a=-1,b=0.8,c=1.5 a=-1,b=-1,c=-2 a=1,b=1,c=-2 

100ψ  -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 

010ψ  -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 

200ψ  0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 

110ψ  0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 

300ψ  -0.0022 -0.0022 -0.0022 -0.0022 -0.0022 -0.0022 

030ψ  -0.0035 -0.0035 -0.0035 -0.0035 -0.00354 -0.0035 

102ψ  -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 -0.0042 
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6 Conclusion 
This paper proposed a new method for 3D 
Tchebichef moments computation and i ts inverse 
transform by using C lenshaw’s recurrence formula 
combined with symmetry property. Our 3D compact 
algorithm reduces significantly the co mputational 
complexity compared with the s traightforward 
method. The second cont ribution of t his work 
pointed out a new method for direct invariant scale 
and translation extraction. Simulated result cl early 
showed that the e lapsed CPU time is significantly 
reduced and t he proposed 3D descript ors remain 
invariant under any image translating, scaling, and 
reflecting. 
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